翻訳と辞書 |
Tolerance stack : ウィキペディア英語版 | Tolerance analysis
Tolerance analysis is the general term for activities related to the study of potential accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems. Engineers analyze tolerances for the purpose of evaluating geometric dimensioning and tolerancing (GD&T). Methods include 2D tolerance stacks, 3D Monte Carlo simulations, and datum conversions. Tolerance stackups or tolerance stacks are used to describe the problem-solving process in mechanical engineering of calculating the effects of the accumulated variation that is allowed by specified dimensions and tolerances. Typically these dimensions and tolerances are specified on an engineering drawing. Arithmetic tolerance stackups use the worst-case maximum or minimum values of dimensions and tolerances to calculate the maximum and minimum distance (clearance or interference) between two features or parts. Statistical tolerance stackups evaluate the maximum and minimum values based on the absolute arithmetic calculation combined with some method for establishing likelihood of obtaining the maximum and minimum values, such as Root Sum Square (RSS) or Monte-Carlo methods. ==Modeling== In performing a tolerance analysis, there are two fundamentally different analysis tools for predicting stackup variation: worst-case analysis and statistical analysis.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Tolerance analysis」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|